Украина
Каталог   /   Компьютерная техника   /   Комплектующие   /  Процессоры
Процессоры 
Популярные модели
Intel Core i5 Coffee Lake
от 5 103 грн.
LGA1151 Coffee Lake, 2.8 - 3.6 ГГц, ядер 6  , 14 нм
AMD FX
от 1 355 грн.
AM3+, 3.3 - 4.7 ГГц, ядер 4 - 8  , 32 нм
Intel Pentium Kaby Lake
от 1 457 грн.
LGA1151, 3.5 - 3.7 ГГц, ядер 2  , 14 нм
AMD Ryzen 5
от 3 432 грн.
AM4, 3.2 - 3.6 ГГц, ядер 4 / 6  , 12 / 14 нм
Intel Core i3 Coffee Lake
от 2 987 грн.
LGA1151 Coffee Lake, 3.6 - 4 ГГц, ядер 4  , 14 нм
Intel Core i7 Coffee Lake
от 8 032 грн.
LGA1151 Coffee Lake, 3.2 / 3.7 ГГц, ядер 6  , 14 нм
Intel Core i7 Kaby Lake
от 7 592 грн.
LGA1151, 2.9 - 4.2 ГГц, ядер 4  , 14 нм
Intel Core i5 Kaby Lake
от 4 512 грн.
LGA1151, 2.4 - 3.8 ГГц, ядер 4  , 14 нм
AMD Ryzen 7
от 7 225 грн.
AM4, 3 - 3.7 ГГц, ядер 8  , 12 / 14 нм
Intel Core i3 Kaby Lake
от 2 860 грн.
LGA1151, 3.9 - 4.2 ГГц, ядер 2  , 14 нм
Intel Celeron Kaby Lake
от 738 грн.
LGA1151, 2.9 ГГц, ядер 2  , 14 нм
Intel Core i5 Skylake
от 4 280 грн.
LGA1151, 2.7 - 3.5 ГГц, ядер 4  , 14 нм
Intel Core i9 Skylake-X
от 25 999 грн.
LGA2066, 2.6 - 3.3 ГГц, ядер 10 - 18  , 14 нм
Intel Core i7 Skylake
от 6 720 грн.
LGA1151, 3.4 / 4 ГГц, ядер 4  , 14 нм
Возможно, вас заинтересует

Cтатьи, обзоры, полезные советы

Рейтинг процессоров (апрель)
Рейтинг процессоров (апрель)
Рейтинг популярности процессоров основан на комплексной статистике по проявленному интересу интернет-аудитории
Платформа Intel LGA2011-v3: процессоры и материнские платы
Платформа Intel LGA2011-v3: процессоры и материнские платы
Мощнейшие процессоры для профессиональных задач и игровых ПК с несколькими видеокартами
На безрыбье: ТОП-5 бюджетных видеокарт 2017 года
На безрыбье: ТОП-5 бюджетных видеокарт 2017 года
Ваш билет эконом-класса в красочный мир компьютерных игр
Второе дыхание: как проапгрейдить старый или маломощный ноутбук?
Второе дыхание: как проапгрейдить старый или маломощный ноутбук?
Апгрейд ноутбука — вовсе не трудное занятие и экономит уйму денег
Пятерка лучших процессоров AMD до $150
Пятерка лучших процессоров AMD до $150
Оптимальные процессоры AMD для офисной работы, игр и видеомонтажа
Платформа Intel Basin Falls: процессоры и материнские платы
Платформа Intel Basin Falls: процессоры и материнские платы
Процессоры Intel LGA2066 являются беспорно мощнейшими на рынке
Эволюция процессоров Intel: от Core 2 Duo до Core i9
Эволюция процессоров Intel: от Core 2 Duo до Core i9
Двенадцатилетняя история компании Intel в одной статье
Антология процессоров AMD: от Athlon 64 X2 до Ryzen
Антология процессоров AMD: от Athlon 64 X2 до Ryzen
Как развивались процессоры AMD с 2006 года по наше время

Процессоры: характеристики, типы, виды

Серия

Серия, к которой относится процессор. Чипы в пределах одной серии могут различаться по конкретным характеристикам, однако неизбежно имеют некоторые общие особенности.

— Sempron. Серия процессоров бюджетного уровня производства AMD, одна из самых простых и доступных линеек среди всех настольных чипов данного производителя.

A-Series. Общее название для нескольких серий гибридных процессоров от AMD, позиционируемых как APU — Accelerated Processing Unit, решения с продвинутой интегрированной графикой. Подробнее см. «AMD Fusion A4» ниже; эта серия, как и остальные Fusion A, также относятся к A-series.

— EPYC. Серия профессиональных процессоров от AMD, предназначенных преимущественно для серверов; позиционируются, в частности, как решения, оптимизированные для применения в облачных сервисах. Построены на микроархитектуре Zen, так же, как и настольные Ryzen (см. ниже).

— Athlon X2. Процессоры производства AMD, первая в мире серия процессоров двухъядерной архитектуры. В наиболее продвинутых моделях есть кэш третьего уровня.

— Athlon II. Многоядерные процессоры производства AMD, созданные как более дешевая альтернатива производительным Phenom II — в отличии от них, не имеют кэша третьего уровня.

Athlon X4. Серия бюджетных процессоров потребительского уровня, изначально выпущенная в 2015 году как сравнительно недорогие и в то же время п...роизводительные решения под сокет FM+.

FX. Семейство высококлассных производительных процессоров от AMD, первая в мире серия, представившая восьмиядерный процессор для ПК. Впрочем, есть и относительно скромные четырехъядерные. Еще одна особенность — жидкостное охлаждение, штатно входящее в комплект поставки некоторых моделей: классического воздушного бывает недостаточно с учётом высокой мощности и соответствующего TDP (см. ниже).

AMD Fusion A4. Все семейство процессоров Fusion изначально было создано как устройства с интегрированной графикой, объединяющие в одном чипе центральный процессор и видеокарту; такие чипы называют APU — Accelerated Processing Unit. Серии с индексом «A» оснащаются наиболее мощной в семействе встроенной графикой, способной в некоторых случаях на равных конкурировать с недорогими дискретными видеокартами. Чем больше цифра в индексе серии — тем более продвинутой она является; A4 — самая скромная серия среди Fusion A.

AMD Fusion A6. Серия процессоров из линейки Fusion A, относительно скромная, однако несколько более продвинутая, чем A4. Об общих особенностях всех Fusion A см. «AMD Fusion A4» выше.

AMD Fusion A8. Одна из наиболее производительных серий в линейке Fusion A. Об общих особенностях этой линейки см. «AMD Fusion A4» выше.

AMD Fusion A10. Одна из топовых серий процессоров в линейке Fusion A. Об общих особенностях этой линейки см. «AMD Fusion A4» выше.

Ryzen 3. Третья по счету серия процессоров от AMD, построенных на микроархитектуре Zen (после Ryzen 7 и Ryzen 5). Первые чипы этой серии были выпущены летом 2017 года и стали самыми бюджетными решениями среди всех Ryzen. Выпускаются они по тем же технологиям, что и старшие серии, однако в Ryzen 3 деактивирована половина вычислительных ядер. Тем не менее, данная линейка включает довольно производительные устройства, рассчитанные в том числе на игровые конфигурации и рабочие станции.

Ryzen 5. Серия процессоров от AMD, построенная на микроархитектуре Zen. Вторая по счету серия на этой архитектуре, выпущенная в апреле 2017 года как более доступная альтернатива чипам Ryzen 7. Чипы Ryzen 5 имеют несколько более скромные рабочие характеристики (в частности, меньшую тактовую частоту и, в некоторых моделях, объем кэша L3). В остальном они полностью аналогичны «семеркам» и также позиционируются как высокопроизводительные чипы для игровых и рабочих станций. Подробнее см. «Ryzen 7» ниже.

Ryzen 7. Первая серия процессоров от AMD, построенная на микроархитектуре Zen. Была представлена в марте 2017 года. В целом чипы Ryzen (всех серий) продвигаются как высококлассные решения для геймеров, разработчиков, графических дизайнеров и видеоредакторов. Одним из главных отличий Zen от предыдущих микроархитектур стало использование одновременной многопоточности (см. «SMT (многопоточность)»), за счет чего было значительно увеличено количество операций за такт при той же тактовой частоте. Помимо этого, каждое ядро получило собственный блок вычислений с плавающей точкой, увеличилась скорость работы кэш-памяти первого уровня, а объем кэша L3 в Ryzen 7 штатно составляет 16 МБ.

Ryzen Threadripper. Серия высокопроизводительных процессоров от AMD, позиционируемая как «решения для игр и творчества»: по утверждению производителей, чипы Threadripper специально разработаны для высокопроизводительных геймерских систем и рабочих станций. Имеют от 8 ядер и поддерживают многопоточность.

— Ryzen 3 PRO. Модифицированная версия чипов серии Ryzen 3 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— Ryzen 5 PRO. Модифицированная версия чипов серии Ryzen 5 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— Ryzen 7 PRO. Модифицированная версия чипов серии Ryzen 7 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— AMD E-серия. Эта серия процессоров относится к APU, как и описанные выше Fusion A, однако принципиально отличается по специализации: основной сферой применения E-Series являются компактные устройства, в случае ПК — в основном неттопы (см. «Тип»). Соответственно, эти процессоры характеризуются компактностью, невысоким тепловыделением и энергопотреблением, однако их вычислительная мощь также невысока.

— Phenom. Серия производительных процессоров разработки AMD. Выделяются, в частности, многоядерностью – абсолютное большинство моделей выполнено по трёх- либо четырехъядерной архитектуре.

— Phenom II. Второе поколение производительных многоядерных процессоров от AMD. Имеют от двух до шести ядер.

— Opteron. Серия продвинутых процессоров разработки AMD, рассчитанных на применение прежде всего в серверах. Ключевые особенности — многоядерность (количество ядер может достигать 12) и одинаково высокая скорость при работе как с 32-, так и с 64-битными приложениями.

Celeron. Процессоры бюджетного уровня, наиболее простые и недорогие десктопные чипы потребительского уровня от Intel, с соответствующими характеристиками. Тем не менее, нередко сочетают CPU со встроенным графическим модулем; особенно это характерно для последних поколений.

— Celeron D. Модифицированная версия бюджетных процессоров Celeron от Intel. Отличаются повышенной тактовой частотой, а также увеличенным объемом кэша второго уровня.

Pentium. Серия бюджетных настольных процессоров от Intel, несколько более продвинутая, чем Celeron, однако уступающая моделям из серий Core i* (см. ниже).

— Pentium 4. Серия процессоров нижней ценовой категории от Intel. Имеют всего одно ядро. Относятся к устаревшим, на данный момент сняты с производства.

— Pentium D. Серия недорогих процессоров от Intel, преимущественно двухъядерных. Последнее поколение Pentium D было представлено в 2006 году, с тех пор они не выпускаются.

— Core 2 Duo. Двухъядерные процессоры, на момент выпуска относящиеся к среднему уровню. Последнее поколение Core 2 Duo было представлено в 2007 году, на сегодня эта серия окончательно устарела.

— Core 2 Extreme. Серия, включающая процессоры Core 2 Duo и Quad (см. выше) с улучшенной производительностью и расширенными возможностями разгона, включая свободный множитель. Сняты с производства.

— Core 2 Quad. Серия процессоров, во многом аналогичная описанным выше Core 2 Duo (включая хронологию выпуска). Фактически каждый чип состоял из пары Core 2 Duo в одном корпусе, обеспечивая таким образом повышенную производительность. Также являются устаревшими.

Core i3. Серия процессоров начального и среднего уровня, наиболее бюджетная серия в семействе Core ix. Выполнены на основе двухъядерной архитектуры, имеют кэш третьего уровня и встроенный графический процессор.

Core i5. Серия процессоров среднего класса как вообще, так и в семействе Core ix. Архитектура двух- либо четырехъядерная, имеют кэш третьего уровня, многие модели также оснащены встроенным графическим чипом.

Core i7. Серия производительных процессоров; до появления линейки i9 в мае 2017 года были самыми продвинутыми в семействе Core ix. Имеют не менее 4 ядер (в топовых решениях — до 8), объемный кэш 3 уровня и встроенную графику.

Core i9. Высокопроизводительные настольные процессоры, представленные в 2017 году; самая продвинутая серия в семействе Core ix и самая мощная линейка десктопных CPU потребительского уровня на момент выпуска. Имеют от 10 ядер (от 6 в мобильных версиях) и от 12 МБ кэша L3.

Xeon. Серия производительных процессоров, предназначенных прежде всего для серверов. Хорошо подходят для работы в многопроцессорных системах. Количество ядер составляет 2, 4 либо 6, многие модели имеют кэш третьего уровня.

Существует так же разделение процессоров на кодовое название ядра: Skylake (6-е поколение), Kaby Lake (7-е поколение), Skylake-X (7-е поколение), Kaby Lake-X (7-е поколение), Coffee Lake (8-е поколение), Godavari, Kaveri Richland, Trinity, Vishera, Bristol Ridge, Zen.

Разъем (Socket)

Тип разъёма (сокета) для установки процессора на материнской плате. Для успешной установки процессора необходимо, чтобы тип его разъёма совпадал с разъёмом на материнской плате; перед покупкой процессора этот параметр стоит проверить отдельно.

В стане Intel на сегодня актуальные платформы: S775, S1150, S1155, S1356, S1366, S2011, S2011 v3, S2066, S1151, S1151 Coffee Lake, S3647.

В то время как у AMD актуальные разъемы: AM1, AM3/AM3+, FM2/FM2+, AM4, TR4.

Кол-во ядер

Количество физических ядер, предусмотренное в конструкции процессора. Ядро — это часть процессора, отвечающая за выполнение одной последовательности команд; соответственно, наличие нескольких ядер позволяет CPU работать одновременно с несколькими задачами, что положительно сказывается на производительности.

Обычно ядер — четное количество; трехъядерная архитектура встречается относительно редко и является скорее исключением, а одноядерные чипы практически полностью вышли из употребления. В настольных процессорах 2 ядра, как правило, характерны для бюджетных моделей и недорогих решений среднего класса, 4 — для среднего уровня, 6, 8 и более — для продвинутого, включая процессоры для серверов и рабочих станций. В то же время отметим, что фактические возможности CPU зависят не только от количества ядер, но и от ряда особенностей и технологических ухищрений: к примеру, технология Hyper-threading (см. ниже) позволяет заметно повысить производительность по сравнению с аналогичными моделями.

Hyper-threading

Поддержка процессором функции Hyper-threading.

Hyper-threading фактически представляет собой вариант одновременной многопоточности (SMT), разработанный компанией Intel и применяемый в её чипах с 2002 года. Данная технология используется для оптимизации нагрузки на каждое физическое ядро процессора. Её ключевой принцип (упрощённо) заключается в том, что каждое такое ядро определяется системой как 2 логических ядра — например, двухъядерный процессор система «видит» как четырёхъядерный. При этом каждое физическое ядро постоянно переключается между двумя логическими ядрами, по сути — между двумя потоками команд: когда в одном потоке возникает задержка (например, в случае ошибки или в ожидании результата предыдущей инструкции), ядро не простаивает, а приступает к выполнению второго потока команд. Благодаря такой технологии уменьшается время отклика процессора, а в серверных системах — увеличивается стабильность при большом количестве подключённых пользователей.

В процессорах AMD аналогичная функция применяется под оригинальным названием SMT (см. ниже).

SMT (многопоточность)

Поддержка процессором технологии одновременной многопоточности (SMT).

В широком смысле термин SMT охватывает все варианты одновременной многопоточности, однако компания Intel применяет для своих процессоров обозначение «Hyper-threading» (см. выше). Поэтому на рынке обозначение SMT встречается только в чипах AMD; впервые подобные процессоры были представлены в 2017 году в рамках микроархитектуры Zen. Основная цель SMT заключается в том, чтобы максимально устранить простаивания ядер процессора («пустые циклы», когда не выполняется никаких действий). Достигается это следующим образом: физическое ядро процессора «видится» компьютером как два логических ядра, каждое их которых работает со своим потоком команд. Когда в одном из потоков возникает задержка (например, при ожидании результата запроса) — система переключается на другой поток, заполняя паузу и не позволяя ядру простаивать. Благодаря этому повышается фактическое количество инструкций за такт, что даёт значительный прирост скорости и производительности без изменения тактовой частоты (к примеру, для серии Ryzen заявлено увеличение количества инструкций за такт на 40% по сравнению с предыдущим поколением чипов AMD).

Тактовая частота

Количество тактов за секунду, которое выдаёт процессор в штатном рабочем режиме. Тактом называется отдельный электрический импульс, используемый для обработки данных и синхронизации процессора с остальными компонентами компьютерной системы. Различные операции могут требовать как долей такта, так и нескольких тактов, однако в любом случае тактовая частота является одним из основных параметров, характеризующих производительность и скорость работы процессора — при прочих равных характеристиках процессор с более высокой тактовой частотой будет быстрее работать и лучше справляться со значительными нагрузками. В то же время стоит отметить, что на практике тактовая частота является не единственным подобным показателем — производительность во многом зависит от количества ядер (см. «Количество ядер»), объёма кэша (см. пункты об объёмах кэш-памяти), поддержки специальных инструкций и т.п.

Частота TurboBoost / TurboCore

Максимальная тактовая частота процессора, достигаемая при работе в режиме разгона Turbo Boost или Turbo Core.

Название «Turbo Boost» используется для технологии разгона, используемой компанией Intel, «Turbo Core» — для решения от AMD. Принцип действия в обоих случаях один: если некоторые ядра не задействованы или работают под нагрузкой ниже максимальной, процессор может перебрасывать на них часть нагрузки с загруженных ядер, повышая таким образом вычислительную мощность и производительность. Работа в таком режиме характерна повышением тактовой частоты, она и указывается в данном случае.

Отметим, что речь идёт о максимально возможной тактовой частоте — современные CPU способны регулировать режим работы в зависимости от ситуации, и при относительно невысокой нагрузке фактическая частота может быть ниже максимально возможной. Об общем значении данного параметра см. «Тактовая частота».

Техпроцесс

Технология, по которой изготовлен процессор. Главным определяющим фактором в данном случае является размеры отдельных полупроводниковых элементов (транзисторов), из которых состоит процессор, в нанометрах (нм) — чем меньше этот размер, тем больше транзисторов содержит процессор. Считается, что чем меньше значение параметра «техпроцесс» — тем более совершенна технология изготовления и выше характеристики процессора. Кроме того, более «мелкий» техпроцесс часто означает более низкое тепловыделение (см. Тепловыделение (TDP)).

Сегодня на рынке центральных процессоров, кроме современных 14 и 22 нм , все еще можно встретить 28, 32, 45, и даже 65 нм .

Архитектура

Кодовые обозначения, применяющиеся производителями для объединения нескольких сходных по своим характеристикам процессоров внутри одной серии. Например, серия Intel Core 2 Duo включает в себя архитектуры Conroe, Merom и Wolfdale. Одним из определяющих факторов для отнесения процессора к той или иной линейке довольно часто является технологический процесс изготовления (см. Техпроцесс).

Интегрированная графика

Наличие чипа для обработки графики, встроенного непосредственно в процессор. Этот чип отвечает за вывод изображения на монитор, а необходимая для этого память отбирается из оперативной — таким образом, в одном устройстве фактически совмещаются процессор и интегрированная видеокарта. Такая схема обладает всеми характерными чертами интегрированного видео — в частности, рассчитана прежде всего на небольшие нагрузки (офисные приложения, Интернет, видео стандартного разрешения) и слабо подходит для ресурсоемких задач, например игр — для этого все же лучше иметь отдельную видеокарту. Все остальные процессоры обычно без встроенной графики.

Модель GPU

Модель интегрированного видеоядра, установленного в процессоре. Подробнее о самом ядре см. «Интегрированная графика». А зная название модели графического чипа, можно найти его подробные характеристики и уточнить производительность процессора по работе с видео.

Так у Intel есть такие модели как HD Graphics 510, HD Graphics 530, HD Graphics 610, HD Graphics 630 и UHD Graphics 630. А у AMD: Radeon R5 series, Radeon R7 series и Radeon RX Vega.

1-го уровня L1

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Кэш 1 уровня имеет наибольшее быстродействие и наименьший объём — до 128 Кб. Он является неотъемлемой частью любого процессора.

2-го уровня L2

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Объём кэша 2 уровня может достигать 12 Мб, такой кэш имеет абсолютное большинство современных процессоров.

3-го уровня L3

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Кэш 3 уровня имеет наименьшее быстродействие и наибольший объём — до 24 Мб; такой кэш имеют далеко не все процессоры, чаще всего это наиболее продвинутые и производительные модели.

Частота системной шины

Частота системной шины, поддерживаемая процессором, фактически — тактовая частота, на которой происходит обмен данными между процессором и остальной системой.

Данный параметр является ключевым для определения общей тактовой частоты CPU (см. выше): эта частота равняется частоте системной шины, помноженной на множитель (см. ниже).

Тепловыделение (TDP)

Максимальное количество тепла, выделяемое процессором при работе в штатном режиме. Этот параметр определяет требования к системе охлаждения, необходимой для нормальной работы процессора, поэтому иногда его называют TDP — thermal design power, буквально «мощность температурной (охлаждающей) системы». Проще говоря, если процессор имеет тепловыделение в 60 Вт — для него необходима система охлаждения, способная отвести как минимум такое количество тепла. Соответственно чем ниже TDP — тем ниже требования к системе охлаждения. Для некоторых систем очень критично низкое TDP.

Поддержка инструкций

Поддержка процессором различных наборов дополнительных команд. Это могут быть инструкции, оптимизирующие работу процессора в целом либо с приложениями определённого типа (например, мультимедийными, или 64-разрядными), предотвращающие запуск на компьютере определённого рода вирусов и т.п. У каждого производителя имеется свой ассортимент инструкций для процессоров.

Множитель

Коэффициент, на основании которого выводится значение тактовой частоты процессора. Последняя вычисляется путём умножения множителя на частоту системной шины (см. Частота системной шины). Например при частоте системной шины 533 МГц и множителе 4 тактовая частота процессора будет составлять приблизительно 2,1 ГГц.

Свободный множитель

Возможность изменять значение множителя (см. Множитель) процессора по собственному желанию. В отличии от оверклокинга («разгона») в его классическом понимании, часто связанного со взломом настроек процессора, свободный множитель даёт возможность «легально» и довольно легко менять тактовую частоту процессора — чаще всего это реализуется через настройки BIOS. При этом не стоит забывать, что увеличенная частота работы процессора требует соответствующей эффективности системы его охлаждения.

Макс. рабочая температура

Максимальная температура, при которой процессор способен эффективно продолжать работу — при нагреве выше этой температуры большинство современных процессоров отключаются, дабы избежать неприятных последствий перегрева (вплоть до сгорания чипа). Чем выше максимальная рабочая температура — тем менее процессор требователен к системе охлаждения, однако мощность охлаждения в любом случае не должна быть ниже TDP (см. Тепловыделение (TDP)).

Макс. объем

Максимальный объём оперативной памяти (RAM), с которым процессор может корректно работать.

Чем больше объём «оперативки» — тем более высокие мощности требуются для корректной работы с ней. Соответственно, любой процессор неизбежно будет ограничен по данному параметру. Впрочем, даже сравнительно скромные современные CPU могут иметь весьма внушительные максимальные объёмы RAM, исчисляемые десятками гигабайт.

Макс. частота DDR3

Наибольшая частота модулей оперативной памяти стандарта DDR3, с которыми совместим процессор.

Более высокая частота модулей памяти, с одной стороны, увеличивает скорость их работы, с другой — выдвигает повышенные требования к вычислительной мощности процессора. Поэтому современные CPU имеют ограничения по частоте «оперативки». Что же касается DDR3, то это один из наиболее распространённых современных типов RAM; он постепенно вытесняется более продвинутым DDR4, однако всё ещё весьма популярен.

Макс. частота DDR4

Наибольшая частота модулей оперативной памяти стандарта DDR4, с которыми совместим процессор.

Более высокая частота модулей памяти, с одной стороны, увеличивает скорость их работы, с другой — выдвигает повышенные требования к вычислительной мощности процессора. Поэтому современные CPU имеют ограничения по частоте «оперативки».

Стандарт DDR4 был представлен в 2010 году (окончательная версия — в 2012) как наследник популярного DDR3.

Число каналов

Максимальное количество каналов, поддерживаемое процессором при работе с оперативной памятью.

Простейшим режимом для современных ПК является одноканальный (когда весь объём RAM воспринимается как единый массив). Он поддерживается всеми процессорами и материнскими платами. Однако чаще всего встречаются «материнки» на 2 канала, а в более продвинутых моделях это число может достигать 3 или даже 4. Многоканальный режим значительно повышает производительность, однако требует применения специализированных комплектующих, включая процессоры с поддержкой соответствующего числа каналов.
Подбор по параметрам
 
Цена
отдо грн.
Производители
Серия
Разъем (Socket)
Архитектура процессора
Тактовая частота
Кол-во ядер
Техпроцесс
Каналов оперативки
Дополнительно
Модель видеокарты
Тепловыделение TDP
По году выпуска
Каталог процессоров 2018 - новинки, хиты продаж, купить процессоры.