новое название + новый интерфейс

Спустя 13 лет после запуска первой версии сервиса сравнения цен Nadavi,
мы приняли решение сделать решительный шаг вперед и перевести проект
на более функциональную и динамично развивающуюся платформу — E-Katalog.

Украина
Каталог   /   Компьютерная техника   /   Комплектующие   /  SSD накопители
SSD накопители 
Популярные модели
GOODRAM CL100 GEN 2
от 643 грн.
120 - 480 ГБ, 2.5", 3D TLC NAND, 380 - 450 МБ/с, 485 - 550 МБ/с
Kingston KC600
от 1 124 грн.
256 - 2048 ГБ, 2.5", 3D TLC NAND, 500 / 520 МБ/с, IOPS 80 тыс, 550 МБ/с, IOPS 90 тыс
PNY CS900
от 610 грн.
120 - 480 ГБ, 2.5", 3D TLC NAND, 450 - 470 МБ/с, 555 / 560 МБ/с
Apacer Panther AS340
от 630 грн.
120 - 960 ГБ, 2.5", TLC, 375 - 510 МБ/с, 500 - 560 МБ/с
Samsung 970 EVO M.2
от 2 758 грн.
500 / 1000 ГБ, M.2, PCI-E 3.0 4x, 3D TLC NAND, 2300 / 2500 МБ/с, IOPS 450 тыс, 3400 МБ/с, IOPS 370 / 500 тыс
WD Green SSD
от 674 грн.
120 - 1000 ГБ, 2.5", TLC, - / 430 МБ/с, 540 / 545 МБ/с
WD Green SSD M.2
от 685 грн.
120 - 480 ГБ, M.2, SATA 3, TLC / 3D TLC NAND, 540 / 545 МБ/с
Apacer Panther AS350
от 627 грн.
120 - 480 ГБ, 2.5", TLC, 298 / 460 МБ/с, IOPS - / 27 тыс, 310 / 560 МБ/с
Patriot Burst
от 542 грн.
120 - 960 ГБ, 2.5", 3D TLC NAND, 500 / 540 МБ/с, IOPS 40 / 60 тыс, 555 / 560 МБ/с, IOPS 50 - 80 тыс
A-Data XPG GAMMIX S11 Pro M.2
от 1 638 грн.
256 - 1024 ГБ, M.2, PCI-E 3.0 4x, 3D TLC NAND, 1200 - 3000 МБ/с, IOPS 290 / 380 тыс, 3500 МБ/с, IOPS 220 / 390 тыс
Kingston A400
от 649 грн.
120 - 1920 ГБ, 2.5", 3D TLC NAND, 320 - 450 МБ/с, 500 МБ/с, IOPS - / 90 тыс
Silicon Power Ace A55
от 655 грн.
128 - 1024 ГБ, 2.5", 3D TLC NAND, 420 - 530 МБ/с, 550 / 560 МБ/с
Intel 660p Series
от 2 059 грн.
512 - 2048 ГБ, M.2, PCI-E 3.0 4x, 3D QLC NAND, 1000 / 1800 МБ/с, IOPS 220 тыс, 1500 / 1800 МБ/с, IOPS 90 - 220 тыс
Transcend PCIe SSD 220S
от 1 674 грн.
256 - 1000 ГБ, M.2, PCI-E 3.0 4x, 3D TLC NAND, 1100 - 2800 МБ/с, IOPS 290 - 425 тыс, 3300 МБ/с, IOPS 210 / 360 тыс
Возможно, меня заинтересует

Cтатьи, обзоры, полезные советы

Все материалы
Отзывы о брендах из раздела ssd накопители
Рейтинг брендов из раздела ssd накопителей составленный по отзывам и оценкам посетителей сайта
Рейтинг ssd накопителей (май)
Рейтинг популярности ssd накопителей основан на комплексной статистике по проявленному интересу интернет-аудитории
Насколько быстрый SSD нужен для вашего настольного ПК или ноутбука?
Скорость твердотельного накопителя 560, 2100, 3500 или максимальные 5000 МБ/с?
Собираем ПК для видеомонтажа и стриминга игр: системный блок и периферия
Высокопроизводительный компьютер с монитором, клавиатурой и мышью
Сервер на столе: ТОП-5 NAS для домашнего использования
Лучшие сетевые хранилища с поддержкой двух винчестеров и богатым функциональным набором

SSD накопители: характеристики, типы, виды

Тип

Внутренний. Накопители, предназначенные для установки в корпус компьютера. Рассчитаны на постоянное функционирование в пределах одной системы, не предполагают частого подключения/отключения. Один из самых популярных способов использования таких модулей — хранение системных файлов для ускорения загрузки и работы ОС; хотя, разумеется, внутренний SSD можно применять и как накопитель общего назначения.

Внешний. Накопители в виде внешних устройств, рассчитанных на постоянное переподключение. Используют разъемы USB или Thunderbolt той или иной версии (см. «Разъем»). Удобны, в частности, для транспортировки больших объемов данных между разными компьютерами, особенно если эти данные приходится часто перезаписывать — наружные SSD обходятся дороже внешних жестких дисков, зато и работают значительно быстрее.

— Внешний/внутренний. Модели, допускающие оба описанных выше варианта использования. Обычно представляют собой внутренние накопители, дополненные внешним карманом (см. ниже). Впрочем, подобная универсальность требуется крайне редко — чаще всего накопитель покупается в расчете под один конкретный способ использования. Поэтому данный вариант распространения не получил.

Назначение

Тип компьютеров, на которые изначально рассчитан SSD-модуль.

— Для ПК. Модули, предназначенные для домашних и офисных ПК — наиболее распространенная разновидность в наше время. Уступают серверным моделям по ряду характеристик (скорость работы, время наработки на отказ и т. п.), однако этот момент не является критичным с учетом общего назначения. Также отметим, что модули данной специализации могут заметно различаться по свойствам — от простейших бюджетных накопителей до высококлассных решений под геймерские системы и рабочие станции.

Для сервера. Накопители, рассчитанные на использование в серверных системах. Отличаются высокой надежностью и скоростью работы, однако и стоят недешево; кроме того, могут использовать специфические стандарты подключения вроде SAS (см. «Разъем»). Поэтому применять такие модули в обычных ПК не имеет смысла.

Емкость

Номинальная емкость накопителя. Этот параметр напрямую определяет не только количество данных, которое может поместиться на устройство, но и его стоимость; многие модели SSD даже выпускаются в нескольких версиях, различающихся по вместимости. Поэтому при выборе стоит учитывать реальные потребности и особенности применения — иначе можно переплатить значительную сумму за не нужные на практике объемы.

Что касается фактических значений, то вместимость до 120 ГБ в наше время считается небольшой. Показатели от 120 ГБ до 240 ГБ можно назвать средними, от 500 ГБ до 1 ТБ — солидными, а наиболее емкие современные SSD вмещают 2 TБ и даже более.

Форм-фактор

Форм-фактор, в котором выполнен накопитель. Эта характеристика определяет размеры и форму модуля, а во многих случаях — еще и интерфейс подключения. При этом стоит отметить, что для внешних SSD (см. «Тип») форм-фактор является второстепенным параметром, от него зависят лишь общие габариты корпуса (и то весьма приблизительно). Поэтому обращать внимание на этот момент стоит прежде всего при выборе внутреннего SSD — такой накопитель должен соответствовать форм-фактору посадочного места под него, иначе нормальная установка будет невозможной.

Вот некоторые наиболее популярные варианты:

2,5". Один из самых распространенных форм-факторов для внутренних SSD. Изначально накопители на 2,5" применялись в ноутбуках, однако в наше время соответствующие слоты встречаются и в большинстве настольных ПК. Как бы то ни было, модули этого форм-фактора могут устанавливаться разными способами: одни крепятся в отдельные гнезда аналогично жестким дискам, другие (под интерфейс U.2, см. «Разъем») вставляются прямо в разъемы материнских плат.

M.2. Форм-фактор, применяемый в основном в высококлассных внутренних накопителях, сочетающих в себе миниатюрные размеры и значительные объемы. Использует собственный стандартный разъем подключения, поэтому этот разъем в характеристиках отдельно не указывается. Стоит учитывать, что стандарт M.2 сочетает в себе сразу два формата передачи данн...ых — SATA и PCI-E, и накопителем обычно поддерживается только один из них; подробнее см. «Интерфейс M.2». Как бы то ни было, благодаря небольшим габаритам подобные модули подходят как для настольных ПК, так и для ноутбуков.

mini-SATA (mSATA). Миниатюрный форм-фактор внутренних накопителей, идейный предшественник M.2. Изначально разрабатывался для нетбуков и ультракомпактных лэптопов, однако в наше время можно встретить и настольные ПК с разъемами mSATA на материнских платах. Впрочем, в связи с появлением и развитием более продвинутых вариантов этот форм-фактор постепенно выходит из употребления.

PCI-E карта (HHHL). Накопители, выполненные в виде плат расширения и подключаемые в слоты PCI-E (так же, как внешние видеокарты, звуковые платы и т. п.). Маркировка HHHL означает половинную длину и половинную высоту — таким образом, подобные модули подходят не только для полноразмерных ПК, но и для более компактных систем — к примеру, неттопов и даже некоторых ноутбуков. Интерфейс PCI-E позволяет достичь хороших скоростей обмена данными, к тому же именно через него реализуется NVMe (см. ниже). С другой стороны, эти возможности доступны и в более совершенных и компактных форм-факторах, в частности M.2. Поэтому SSD-модулей в формате карт PCI-E в наше время на рынке немного.

1,8". Форм-фактор миниатюрных накопителей, изначально созданный для ультракомпактных ноутбуков. Впрочем, в наше время SSD-модули этого формата можно встретить крайне редко, причем это в основном внешние модели. Это связано с появлением более удобных и совершенных форм-факторов для внутреннего применения — таких, как описанный выше M.2.

— 3,5". Наиболее крупный форм-фактор современных SSD-накопителей — размер такого модуля сравним с традиционным жестким диском для настольного ПК. В наше время практически вышел из употребления в связи с громоздкостью и отсутствием каких-либо заметных преимуществ перед более миниатюрными решениями.

Интерфейс M.2

Интерфейс подключения, поддерживаемый накопителем формата M.2 (см. «Форм-фактор»).

Все такие накопители используют стандартный аппаратный разъем, однако через этот разъем могут реализовываться разные электрические (логические) интерфейсы — либо SATA (обычно SATA 3), либо PCI-E (чаще всего в вариантах PCI-E 3.0 2x, PCI-E 3.0 4x или PCI-E 4.0 4x). Разъем M.2 на материнской плате должен поддерживать соответствующий интерфейс — иначе нормальная работа SSD будет невозможна. Рассмотрим каждый вариант более детально.

Подключение по стандарту SATA 3 обеспечивает скорость передачи данных до 5,9 Гбит/с (около 600 МБ/с); оно считается очень простым вариантом и используется в основном в бюджетных M.2-модулях. Это связано с тем, что данный интерфейс изначально создавался под жесткие диски, и для более быстрых SSD-накопителей его возможностей уже может не хватать.

В свою очередь, интерфейс PCI-E дает более высокие скорости подключения и позволяет реализовывать специальные технологии вроде NVMe (см. ниже). В обозначении такого интерфейса указывается его версия и количество линий — например, PCI-E 3.0 2x означает версию 3 с двумя линиями передачи данных. По этому обозначению можно определить максимальную скорость подключения: PCI-E версии 3.0 дает чуть менее 1 ГБ/с на 1 линию, версии 4.0 — вдвое больше. Таким образом,...к примеру, для упомянутого PCI-E 3.0 2x максимальная скорость обмена данными будет составлять около 2 ГБ/с (2 линии по 1 ГБ/с). При этом отметим, что более новые и быстрые накопители можно подключать к более ранним и медленным разъемам M.2 — разве что скорость передачи данных при этом будет ограничиваться возможностями разъема.

Разъем

Разъем (разъемы) подключения, используемый (используемые) в накопителе. Отметим, что для наружных моделей (см. «Тип») здесь, как правило, указывается разъем на корпусе самого накопителя; возможность подключения к тому или иному гнезду на ПК (или другом устройстве) зависит в основном от наличия соответствующих кабелей. Исключение составляют модели с несъемным проводом — в них речь идет о штекере на таком проводе.

В некоторых форм-факторах — например, M.2 — используется собственный стандартный разъем, поэтому для таких моделей этот параметр не уточняется. В остальных же случаях разъемы можно условно разделить на внешние и внутренние — в зависимости от типа накопителей (см. выше). Во внутренних модулях, помимо того же M.2, можно встретить интерфейсы SATA 3, U.2 и SAS. Внешние устройства используют в основном разные виды USB — классический разъем USB (версии 3.2 gen1 или 3.2 gen2) либо же USB C (версии 3.2 gen1, 3.2 gen2 или 3.2 gen2x2). Кроме того, встречаются решения с интерфейсом Thunderbolt (обычно версий v2 или v3). Рассмотрим эти варианты подробнее:

— SATA 3. Третья версия интерфейса SATA, обеспечивающая скорость передачи данных до 5,9 Гбит/с (около 6...00 МБ/с). По меркам SSD такая скорость является невысокой, так как SATA изначально разрабатывался под жесткие диски и не предполагал использования с быстродействующей твердотельной памятью. Поэтому подобное подключение можно встретить преимущественно в бюджетных и устаревших внутренних накопителях.

— SAS. Стандарт, созданный как высокопроизводительное подключение для серверных систем. Несмотря на появление более продвинутых интерфейсов, все еще встречается и в наше время. Обеспечивает скорость передачи данных до 22,5 Гбит/с (2,8 ГБ/с), в зависимости от версии.

— U.2. Разъем, специально созданный для высококлассных внутренних накопителей в форм-факторе 2,5", преимущественно серверного назначения. Собственно, U.2 — это название специализированного форм-фактора (2,5", высота 15 мм), а разъем формально называется SFF-8639. Подключаются такие модули аналогично платам расширения PCI-E (по этой же шине), однако имеют более миниатюрные размеры и допускают горячую замену.

— USB 3.2 gen1. Традиционный полноразмерный разъем USB, соответствующий версии 3.2 gen1. Эта версия (ранее известная как 3.1 gen1 или 3.0) обеспечивает скорость передачи данных до 4,8 Гбит/с. Она совместима с другими стандартами USB, разве что скорость подключения будет ограничена наиболее медленной версией.

— USB 3.2 gen2. Традиционный полноразмерный разъем USB, соответствующий версии 3.2 gen2 (ранее известной как 3.1 gen2 или просто 3.1). Работает на скоростях до 10 Гбит/с, в остальном по ключевым особенностям аналогичен описанному выше USB 3.2 gen1

— USB C 3.2 gen1. Разъем типа USB C, поддерживающий версию подключения 3.2 gen1. Напомним, эта версия позволяет добиться скорости до 4,8 Гбит/с. А USB C — относительно новый тип USB-разъема, имеющий небольшие размеры (чуть крупнее microUSB), симметричную овальную форму и двустороннюю конструкцию. Он особенно удобен для внешних SSD с учетом того, что такие накопители делаются все более миниатюрными.

— USB C 3.2 gen2. Разъем типа USB C, поддерживающий версию подключения 3.2 gen2 — со скоростью передачи данных до 10 Гбит/с. Впрочем, такой накопитель сможет работать и с более медленными USB-портами — разве что скорость будет ограничена возможностями такого порта. Подробнее о самом разъеме USB C см. выше.

— USB C 3.2 gen2x2. Разъем типа USB C, поддерживающий версию подключения 3.2 gen2x2. Подробнее о самом разъеме см. выше; а версия 3.2 gen 2x2 (ранее известная как USB 3.2) позволяет добиться скоростей до 20 Гбит/с — то есть вдвое выше, чем в оригинальной 3.2 gen 2, отсюда и название. Также стоит отметить, что эта версия реализуется только через разъемы USB C и не применяется в портах более ранних стандартов.

— Thunderbolt v2. Изначально Thunderbolt — универсальный разъем, сочетающий в себе возможности порта для внешней периферии и видеовыхода. Он применяется в основном в компьютерах и ноутбуках Apple, но вот периферию под него (в том числе SSD-накопители) выпускают и сторонние производители. Конкретно же версия Thunderbolt v2 обеспечивает скорость передачи данных до 20 Гбит/с и использует разъем, идентичный miniDisplayPort; однако к обычному miniDisplayPort такое устройство подключать нельзя, нужен именно Thunderbolt.

— Thunderbolt v3. Третья версия интерфейса Thunderbolt (см. выше). От предшественников отличается не только более высокой скоростью — до 40 Гбит/с — но и штекером: Thunderbolt v3 работает через аппаратный разъем USB C. А во многих ПК и ноутбуках разъем USB C может работать в двух режимах — и как USB, и как Thunderbolt v3, в зависимости от подключенной периферии. Однако сами по себе эти интерфейсы не являются совместимыми: для подключения SSD-модуля с Thunderbolt v3 подойдет не всякий порт USB C, а только тот, где такой формат работы прямо заявлен. А вот для подключения такого накопителя к Thunderbolt более ранней версии достаточно соответствующего кабеля или переходника.

Контроллер

Модель контроллера, установленного в SSD-накопителе.

Контроллер представляет собой управляющую схему, которая, собственно, и обеспечивает обмен информацией между ячейками памяти и компьютером, к которой подключен накопитель. Возможности того или иного SSD-модуля (в частности, скорость чтения и записи) во многом зависят именно от этой схемы. Зная модель контроллера, можно найти подробные данные по нему и оценить возможности накопителя. Для несложного повседневного использования эта информация, как правило, не нужна, но вот профессионалам и энтузиастам (моддерам, оверклокерам) она может пригодиться.

В наше время высококлассные контроллеры выпускаются преимущественно под такими брендами: Marvell, Phison, Silicon Motion, SMI.

Объем буфера обмена

Объём собственной оперативной памяти накопителя. Эта память является промежуточным звеном между оперативной памятью компьютера и собственной постоянной памятью накопителя; в частности, буфер служит для хранения наиболее часто запрашиваемых с модуля данных — таким образом, уменьшается время доступа к ним. Как правило, чем больше размер буфера — тем выше быстродействие накопителя, при прочих равных условиях.

Тип памяти

Тип основной памяти накопителя определяет особенности распределения информации по аппаратным ячейкам и физические особенности самих ячеек.

MLC. Память на основе многоуровневых ячеек, каждая из которых содержит более 1 бита информации; обычно термином MLC обозначают накопители с плотностью данных 2 бита на ячейку. MLC-память пришла на смену надежным, но дорогим SLC-ячейкам, она была популярна в SSD-модулях начального и среднего уровня, однако сейчас данная технология постепенно вытесняется более совершенными вариантами вроде TLC или 3D MLC.

TLC. Дальнейшее развитие описанной выше технологии MLC. TLC расшифровывается как «трехуровневая ячейка», соответственно, каждая ячейка подобной памяти способна хранить 3 бита. Подобная плотность записи несколько увеличивает вероятность ошибок, по сравнению с MLC; кроме того, TLC-память считается менее долговечной. С другой стороны, такие накопители обходятся дешевле, а для повышения надежности в них могут применяться различные конструктивные ухищрения.

3D MLC NAND. Разновидность технологии MLC (см. соответствующий пункт), при которой ячейки памяти размещены на пластине не в один слой, а в несколько. Это позволило не только повысить вместимость накопителей без заметного увеличения габаритов, но и добиться более высокой надежности, чем в оригинальной MLC, при меньшей стоимости производства.
...
3D TLC NAND. «Трехмерная» модификация технологии TLC (см. соответствующий пункт): ячейки памяти, каждая из которых содержит 3 бита информации, размещаются на плате не одним слоем, а в несколько «этажей». Такая компоновка положительно сказалась на эффективности, надежности и сроке службы накопителей, притом что в производстве подобная память проще и дешевле однослойной.

3D QLC NAND. Дальнейшее развитие технологий 3D NAND, предусматривающее 4 бита данных в каждой ячейке памяти. По сравнению с 3D TLC NAND (см. выше) это обеспечивает увеличение плотности записи на 33 %, позволяя добиться более высокой ёмкости при меньших размерах самих накопителей. Кроме того, в некоторых модулях 3D QLC NAND используются конструктивные ухищрения, еще более уменьшающие площадь всего модуля. Правда, и стоимость подобных накопителей довольно высока, поэтому они в основном относятся к профессиональным решениям для датацентров и высокопроизводительных систем.

3D Xpoint. Маркировка «3D» означает, что ячейки памяти в таких устройствах размещены на плате в несколько слоев (в отличие от «обычных» накопителей, где слой всего один). А Xpoint — это относительно «молодой» тип энергонезависимой памяти, принципиально отличающийся от NAND. В таких накопителях ячейки памяти и селекторы располагаются на пересечениях перпендикулярных рядов проводящих дорожек, а запись осуществляется без использования транзисторов. Благодаря последнему 3D Xpoint очень проста и недорога в производстве; при этом создатели заявляют, что она в тысячу раз быстрее и долговечнее, чем NAND. Однако скорость на практике зависит от особенностей конкретного накопителя, а долговечность еще предстоит проверить.

NVMe

Поддержка накопителем технологии NVMe.

NVMe представляет собой протокол обмена данными, разработанный специально для SSD-модулей и применяемый при подключении по шине PCI-E. Этот протокол был разработан для устранения недостатков, характерных для более ранних стандартов подключения (вроде SCSI или SATA) — прежде всего невысокой скорости, не позволявшей реализовать все возможности твердотельной памяти. NVMe учитывает ключевые достоинства SSD — независимый доступ, многопоточность и низкие задержки. Поддержка этого протокола встроена во все основные современные операционные системы, он работает не только через оригинальный интерфейс PCIe, но и через M.2 (см. «Форм-фактор»). А разъем U.2 вообще был создан специально для SSD-накопителей с NVMe (хотя наличие этого разъема само по себе еще не означает совместимости с данным протоколом).

Внешняя скорость записи

Наибольшая скорость в режиме записи характеризует скорость, с которой модуль может принимать информацию с подключенного компьютера (или другого внешнего устройства). Эта скорость ограничивается как интерфейсом подключения (см. «Разъем»), так и особенностями устройства самого SSD.

Внешняя скорость считывания

Наибольшая скорость обмена данными с компьютером (или другим внешним устройством), которую накопитель может обеспечить в режиме считывания; проще говоря — наибольшая скорость вывода информации с накопителя на внешнее устройство. Эта скорость ограничивается как интерфейсом подключения (см. «Разъем»), так и особенностями устройства самого SSD. Ее значения могут варьироваться от 100 – 500 МБ/с в наиболее медленных моделях до 3 Гб/с и выше в самых продвинутых.

Ударостойкость при работе

Параметр, определяющий стойкость накопителя к падениям и сотрясениям в процессе работы. Измеряется в G — единицах перегрузки, 1 G соответствует обычной силе земного притяжения. Чем выше число G — тем более устойчиво устройство к различного рода сотрясениям и тем меньше вероятность повреждения данных в нём, скажем, в случае падения. Этот параметр особенно важен для внешних накопителей (см. Тип).

Наработка на отказ

Время наработки накопителя на отказ — время, которое он способен непрерывно проработать без сбоев и неполадок; иными словами — время работы, по истечении которого появляется высокая вероятность появления сбоев, а то и выхода модуля из строя.

Как правило, в характеристиках указывается некоторое среднее время, выведенное по результатам условного тестирования. Поэтому фактическое значение этого параметра может отличаться от заявленного в ту или иную сторону; однако на практике этого момент не является особо значимым. Дело в том, что для современных SSD время наработки на отказ исчисляется миллионами часов, а 1 млн часов соответствует более чем 110 годам — при этом речь идет именно о чистом времени работы. Так что с практической стороны долговечность накопителя чаще ограничивается более специфическими параметрами — TBW и DPWD (см. ниже); а гарантия производителя вообще не превышает нескольких лет. Впрочем, данные по наработке на отказ в часах могут также пригодиться при выборе: при прочих равных большее время означает бОльшую надежность и долговечность SSD в целом.

IOPS записи

Показатель IOPS, обеспечиваемый накопителем в режиме записи.

Термином IOPS обозначают наибольшее количество операций ввода-вывода, которое SSD-модуль может совершить за секунду, в данном случае — при записи данных. По этому показателю часто оценивают быстродействие накопителя; однако это далеко не всегда верно. Во-первых, значения IOPS у разных производителей могут замеряться по-разному — по максимальному значению, по среднему, по произвольной записи, по последовательной записи и т. п. Во-вторых, преимущества высоких IOPS становятся заметны лишь при некоторых специфических операциях — в частности, одновременном копировании большого количества файлов. Кроме того, на практике скорость работы накопителя может ограничиваться системой, к которой он подключен. В свете всего этого сравнивать по IOPS разные SSD-модули в целом допускается, однако реальная разница в быстродействии, скорее всего, будет не столь заметна, как разница в цифрах.

Что касается конкретных значений, то для режима записи с IOPS до 50 тыс. считается сравнительно скромным, 50 – 100 тыс. — средним, более 100 тыс. — высоким.

IOPS считывания

Показатель IOPS, обеспечиваемый накопителем в режиме считывания.

Термином IOPS обозначают наибольшее количество операций ввода-вывода, которое SSD-модуль может совершить за секунду, в данном случае — при чтении данных с него. По этом показателю часто оценивают быстродействие накопителя; однако это далеко не всегда верно. Во-первых, значения IOPS у разных производителей могут замеряться по-разному — по максимальному значению, по среднему и т. п. Во-вторых, преимущества высоких IOPS становятся заметны лишь при некоторых специфических операциях — в частности, одновременном копировании большого количества файлов. Кроме того, на практике скорость работы накопителя может ограничиваться системой, к которой он подключен. В свете всего этого сравнивать по IOPS разные SSD-модули в целом допускается, однако реальная разница в быстродействии, скорее всего, будет не столь заметна, как разница в цифрах.

Для современных SSD в режиме чтения значение IOPS менее 50 тыс. считается весьма скромным показателем, в большинстве моделей этот параметр лежит в пределах 50 – 100 тыс., однако встречаются и более высокие цифры.

TBW

Аббревиатурой TBW обозначают наработку накопителя на отказ, выраженную в терабайтах. Иными словами, это общее количество информации, которое гарантированно может быть записано (перезаписано) на данный модуль. Данный показатель позволяет оценить общую надежность и срок службы накопителя — чем выше TBW, тем дольше прослужит устройство, при прочих равных.

Отметим, что зная TBW и срок гарантии, можно вычислить количество перезаписей в день (DWPD, см. соответствующий пункт), если производитель не указал этих данных. Для этого нужно воспользоваться формулой: DWPD = TBW /(V*T*365), где V — емкость накопителя в терабайтах, T — срок гарантии (лет). Что же до конкретных цифр, то на рынке немало накопителей с относительно невысоким TBW — до 100 ТБ; даже таких значений нередко оказывается достаточно для повседневного использования в течение значительного времени. Впрочем, чаще встречаются модели с TBW на уровне 100 – 500 ТБ. Значения в 500 – 1000 ТБ можно отнести к категории «выше средней», а в наиболее надежных решениях этот показатель еще выше.

DWPD

Количество полных перезаписей в день, допускаемое конструкцией накопителя, иными словами — сколько раз в день можно гарантированно перезаписывать накопитель целиком, не боясь сбоев.

Данный параметр описывает общую надежность и долговечность накопителя. По смыслу он схож с TBW (см. соответствующий пункт), одну величину даже можно перевести в другую, зная срок гарантии: TBW = DWPD*V*T*365, где V — объем накопителя в терабайтах, а T — срок гарантии в годах. Тем не менее, DWPD является несколько более специфическим показателем: он описывает не только общую наработку на отказ, но еще и ограничение по количеству перезаписей за день; при превышении данного ограничения накопитель может выйти из строя раньше, чем указано в гарантии. Впрочем, даже небольшие значения DWPD — 0,5 – 1 раз в день, а то и менее 0,5 раз в день — нередко оказываются достаточными не только для несложного повседневного использования, но даже для профессиональных задач. Более высокие показатели — 1 – 2 раза в день или более — встречаются редко; в то же время это могут быть как высококлассные, так и бюджетные SSD-модули.

Гарантия производителя

Гарантия производителя, предусмотренная для данной модели.

Фактически это минимальный срок службы, обещанный производителем при условии соблюдения правил эксплуатации. Чаще всего фактический срок службы устройства оказывается заметно дольше гарантированного. Однако стоит учитывать, что гарантия нередко предусматривает дополнительные условия — например, «[столько-то лет] либо до исчерпания TBW» (подробнее о TBW см. выше).

Конкретные сроки гарантии могут быть разными даже у схожих накопителей одного производителя. Самые популярные варианты — 3 года и 5 лет, однако встречаются и другие цифры — до 10 лет в наиболее дорогих и высококлассных моделях.

Подсветка

Наличие подсветки в SSD накопителе; также в данном пункте может указываться технология синхронизации подсветки, поддерживаемая той или иной моделью.

Сама по себе функция подсветки актуальна исключительно для внутренних моделей (см. «Тип»). Она не влияет на функционал накопителя, однако придает ему необычный внешний вид — это может пригодиться при сборке ПК в необычном, выделяющемся дизайне. Разумеется, при этом нужно учесть, что подсветка должна быть видна снаружи — а значит, корпус должен иметь прозрачные стенки, или хотя бы смотровое окно.

Что касается синхронизации, то она позволяет «согласовать» между собой подсветку SSD-модуля и других компонентов системы — материнской платы, видеокарты, клавиатуры, мыши и т. п. — с таким расчетом, чтобы все компоненты одновременно меняли цвет или создавали интересные эффекты (такие, как «цветовая волна»). Для полноценного согласования все системы подсветки должны использовать одну технологию синхронизации; при этом многие производители имеют свои технологии, несовместимые между собой. В то же время выпускаются также SSD-модули формата «multi compatibility» — совместимые с разными технологиями (конкретный список поддерживаемых форматов синхронизации стоит уточнять отдельно).

TRIM

Поддержка модулем команды TRIM.

Особенность работы SSD-модулей заключается в том, что при удалении данных в обычном режиме (без использования TRIM) изменения вносятся только в «оглавление» накопителя: определенные ячейки помечаются как пустые и готовые к записи новой информации. Однако старая информация из них не удаляется, и при записи новых данных приходится фактически осуществлять перезапись — от этого заметно падает скорость работы. Команда TRIM призвана исправить ситуацию: при ее поступлении контроллер накопителя проверяет, являются ли пустыми ячейки, помеченные как пустые, и при необходимости очищает их.

Разумеется, данная функция должна поддерживаться не только накопителем, но и системой, однако возможность работы с TRIM встроена в большинство популярных современных ОС.

Радиатор охлаждения M.2

Наличие радиатора в накопителе форм-фактора M.2 (см. выше).

Радиатор обычно представляет собой металлическую пластину, закрепленную на плате накопителя. Он улучшает отвод тепла, что особенно важно при высоких нагрузках, связанных с большими объемами информации. Накопители M.2 с радиатором предназначены в основном для высокопроизводительных систем, в частности, игровых.

Также отметим, что радиаторы M.2 встречаются в качестве оснащения материнских плат, так что если сам накопитель не имеет данной функции — можно подобрать к нему «материнку» с радиатором.

Внешний карман

Аксессуар, позволяющий применять внутренний SSD в роли внешнего носителя. Такой «карман» фактически представляет собой чехол с коннектором (обычно USB того или иного типа); в этот чехол устанавливается собственно накопитель, и всю конструкцию можно использовать как внешний SSD. Для внутреннего использования модуль, соответственно, извлекается из кармана.

Кабель в комплекте

Тип кабеля, которым укомплектован накопитель.

Данный параметр актуален исключительно для внешних моделей (см. «Тип»). Тип кабеля указывается по типам коннекторов на его концах, при этом первым указывается штекер для подключения к накопителю, вторым — для подключения к компьютеру. Конкретные виды коннекторов могут быть такими:

— USB А. Штекер под традиционные полноразмерные порты USB — такие, как предусматриваются в большинстве компьютеров и ноутбуков. Собственно, такой штекер применяется только на «компьютерном» конце кабеля — для самих накопителей разъемы USB A слишком громоздки.

— USB C. Наиболее новый из современных разъемов USB. В отличие от предшественников имеет двустороннюю конструкцию — штекер может вставляться в разъем любой стороной. Весьма компактен, благодаря чему вполне подходит для установки в корпус накопителя; однако встречается и в компьютерах/ноутбуках, так что штекеры USB C могут предусматриваться как с одной, так и с обеих сторон кабеля.

— Micro B. Штекер под разъем типа microUSB; такой разъем многим знаком по портативным гаджетам вроде смартфонов и планшетов, встречается он и в SSD-накопителях. Собственно, штекер micro B предусматривается только со стороны накопителя — в компьютерах этот разъем практически не встречается.

— MiniUSB. Еще одна уменьшенная версия USB-штекера, во многом аналогичная описанному выше micro B. В наше время считается устаревшей и практически вышла из уп...отребления.

Самыми распространенными вариантами комплектных кабелей являются USB C – USB A, USB C – USB C, micro B – USB A и mini USB – USB A. Некоторые накопители, имеющие разъем USB C, оснащаются сразу двумя типами провода — с USB C и USB A на «компьютерном» конце.

Ударостойкий корпус

Наличие в накопителе усиленной защиты от ударов и сотрясений.

SSD-модули сами по себе довольно устойчивы к ударам; данная же особенность указывается в том случае, если накопитель специально усилен в расчете на то, чтобы максимально противостоять падениям и другим «неприятностям». Ударостойкий корпус актуален в первую очередь для наружных моделей (см. «Тип»).

Материал корпуса

Материал, из которого выполнен корпус накопителя. Данный параметр актуален в основном для внешних моделей (см. «Тип»), т.к. внутренние защищены корпусом компьютера и при нормальных условиях не контактируют с окружающей средой.

— Пластик. Недорогой и в то же время достаточно практичный материал. Пластик уступает металлу по прочности, однако он вполне надёжен (вплоть до возможности применения в ударопрочных моделях), к тому же не боится влаги. Кроме того, этот материал легко принимает самые разнообразные формы и расцветки, что «облегчает жизнь» дизайнерам и позволяет создавать оригинально выглядящие устройства. Благодаря этому большинство корпусов для SSD-накопителей выполняется именно из пластика.

— Металл. С практической точки зрения металл, с одной стороны, прочнее пластика, с другой — сложнее в обработке и дороже; при этом высокая прочность на практике требуется нечасто. Поэтому металлический корпус характерен в основном для довольно продвинутых решений.
Подбор по параметрам
 
Цена
отдо грн.
Производители
Тип
Назначение
Объем накопителя
Форм-фактор
Разъем подключения
Интерфейс M.2
Тип памяти
Дополнительно
По году выпуска
Расширенный подбор
Каталог SSD накопителей 2020 - новинки, хиты продаж, купить SSD накопители.